Problem 2:

4. There are two types of fertilisers 'A' and 'B'. 'A' consists of 12% nitrogen and 5% phosphoric acid whereas 'B' consists of 4% nitrogen and 5% phosphoric acid. After testing the soil conditions, farmer finds that he needs at least 12 kg of nitrogen and 12 kg of phosphoric acid for his crops. If 'A' costs ₹ 10 per kg and 'B' costs ₹ 8 per kg, then graphically determine how much of each type of fertiliser should be used so that the nutrient requirements are met at a minimum cost. (AI 2016)

Solution:

4. Let the requirement of fertiliser *A* by the farmer be *x* kg and that of *B* be *y* kg.

	Fertiliser A	Fertiliser B	Minimum requirement (in kg)
Nitrogen (in %)	12	4	12
Phosphoric acid/(in %)	5	5	12
Cost (in ₹ kg)	10	8	

The inequations thus formed based on the given problem will be as follows:

 $\frac{12x}{100} + \frac{4y}{100} \ge 12 \implies 12x + 4y \ge 1200 \implies 3x + y \ge 300$ Also, $\frac{5x}{100} + \frac{5y}{100} \ge 12$

 $\Rightarrow 5x + 5y \ge 1200 \Rightarrow x + y \ge 240$ and $x \ge 0, y \ge 0$.

Let *Z* be the total cost of the fertilisers. Then Z = 10x + 8y

The LPP can be stated mathematically as

Minimise Z = 10x + 8y

subject to constraints $3x + y \ge 300$, $x + y \ge 240$, $x \ge 0$, $y \ge 0$.

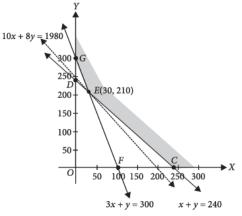
To solve the LPP graphically, we convert the inequations into equations to obtain the following lines:

3x + y = 300, x + y = 240, x = 0 and y = 0

Equation 3x + y = 300 meets the coordinate axes at points *F*(100, 0) and *G*(0, 300)

Equation x + y = 240 meets the coordinate axes at points *C*(240, 0) and *D*(0, 240).

The point of intersection of lines 3x + y = 300 and x + y = 240 is E(30, 210)



The shaded region *GEC* represents the feasible region of given LPP and it is unbounded.

Corner points	Value of $Z = 10x + 8y$	
G(0, 300)	2400	
C(240, 0)	2400	
E(30, 210)	1980 (Minimum)	

From the table, we find that 1980 is the minimum value of *z* at *E*(30, 210). Since the region is unbounded, we have check that the inequality 10x + 8y < 1980 in open half plane has any point in common or not. Since, it has no point in common. So, the minimum value of *Z* is obtained at *E*(30, 210) and the minimum value of *Z* is 1980.

So, the minimum requirement of fertiliser of type *A* will be 30 kg and that of type *B* will be 210 kg.